lunes, 6 de junio de 2011

TERMODINAMICA

Termodinamica
La termodinamica puede definirse como el tema de la Física que estudia los procesos en los que se transfiere energía como calor y como trabajo.
Sabemos que se efectúa trabajo cuando la energía se transfiere de un cuerpo a otro por medios mecánicos. El calor es una transferencia de energía de un cuerpo a un segundo cuerpo que está a menor temperatura. O sea, el calor es muy semejante al trabajo.
El calor se define como una transferencia de energía debida a una diferencia de temperatura, mientras que el trabajo es una transferencia de energía que no se debe a una diferencia de temperatura.
Al hablar de termodinamica, con frecuencia se usa el término "sistema". Por sistema se entiende un objeto o conjunto de objetos que deseamos considerar. El resto, lo demás en el Universo, que no pertenece al sistema, se conoce como su "ambiente". Se consideran varios tipos de sistemas. En un sistema cerrado no entra ni sale masa, contrariamente a los sistemas abiertos donde sí puede entrar o salir masa. Un sistema cerrado es aislado si no pasa energía en cualquiera de sus formas por sus fronteras.
Previo a profundizar en este tema de la termodinamica, es imprescindible establecer una clara distinción entre tres conceptos básicos: temperatura, calor y energía interna. Como ejemplo ilustrativo, es conveniente recurrir a la teoría cinética de los gases, en que éstos sabemos están constituidos por numerosísimas moléculas en permanente choque entre sí.
La temperatura es una medida de la energía cinética media de las moléculas individuales. El calor es una transferencia de energía, como energía térmica, de un objeto a otro debida a una diferencia de temperatura.
La energía interna (o térmica) es la energía total de todas las moléculas del objeto, o sea incluye energía cinética de traslación, rotación y vibración de las moléculas, energía potencial en moléculas y energía potencial entre moléculas. Para mayor claridad, imaginemos dos barras calientes de un mismo material de igual masa y temperatura. Entre las dos tienen el doble de la energía interna respecto de una sola barra. Notemos que el flujo de calor entre dos objetos depende de sus temperaturas y no de cuánta energía térmica o interna tiene cada uno. El flujo de calor es siempre desde el objeto a mayor temperatura hacia el objeto a menor temperatura.
Es una rama de la física que estudia los efectos de los cambios de magnitudes de los sistemas a un nivel macroscópico. Constituye una teoría fenomenológica, a partir de razonamientos deductivos, que estudia sistemas reales, sin modelizar y sigue un método experimental. Los cambios estudiados son los de temperatura, presión y volumen, aunque también estudia cambios en otras magnitudes, tales como la imanación , el potencial químico, la fuerza electromotriz y el estudio de los medios continuos en general. También podemos decir que la termodinámica nace para explicar los procesos de intercambio de masa y energía térmica entre sistemas térmicos diferentes. Para tener un mayor manejo especificaremos que calor significa "energía en tránsito" y dinámica se refiere al "movimiento", por lo que, en esencia, la termodinámica estudia la circulación de la energía y cómo la energía infunde movimiento. Históricamente, la termodinámica se desarrolló a partir de la necesidad de aumentar la eficiencia de las primeras máquinas de vapor.
Primera Ley de la Termodinamica
Primera ley de la termodinámica
También conocida como principio de conservación de la energía para la termodinámica — en realidad el primer principio dice más que una ley de conservación—, establece que si se realiza trabajo sobre un sistema o bien éste intercambia calor con otro, la energía interna del sistema cambiará. Visto de otra forma, esta ley permite definir el calor como la energía necesaria que debe intercambiar el sistema para compensar las diferencias entre trabajo y energía interna. Fue propuesta por Nicolas Léonard Sadi Carnot en 1824, en su obra Reflexiones sobre la potencia motriz del fuego y sobre las máquinas adecuadas para desarrollar esta potencia, en la que expuso los dos primeros principios de la termodinámica. Esta obra fue incomprendida por los científicos de su época, y más tarde fue utilizada por Rudolf Loreto Clausius y Lord Kelvin para formular, de una manera matemática, las bases de la termodinámica

Esta ley se expresa como:
Eint = Q - W
Cambio en la energía interna en el sistema = Calor agregado (Q) - Trabajo efectuado por el sistema (W)
Notar que el signo menos en el lado derecho de la ecuación se debe justamente a que W se define como el trabajo efectuado por el sistema.
Para entender esta ley, es útil imaginar un gas encerrado en un cilindro, una de cuyas tapas es un émbolo móvil y que mediante un mechero podemos agregarle calor. El cambio en la energía interna del gas estará dado por la diferencia entre el calor agregado y el trabajo que el gas hace al levantar el émbolo contra la presión atmosférica.
Segunda Ley de la Termodinamica
La primera ley nos dice que la energía se conserva. Sin embargo, podemos imaginar muchos procesos en que se conserve la energía, pero que realmente no ocurren en la naturaleza. Si se acerca un objeto caliente a uno frío, el calor pasa del caliente al frío y nunca al revés. Si pensamos que puede ser al revés, se seguiría conservando la energía y se cumpliría la primera ley.
Esta ley arrebata la dirección en la que deben llevarse a cabo los procesos termodinámicos y, por lo tanto, la imposibilidad de que ocurran en el sentido contrario (por ejemplo, que una mancha de tinta dispersada en el agua pueda volver a concentrarse en un pequeño volumen). También establece, en algunos casos, la imposibilidad de convertir completamente toda la energía de un tipo en otro sin pérdidas. De esta forma, la segunda ley impone restricciones para las transferencias de energía que hipotéticamente pudieran llevarse a cabo teniendo en cuenta sólo el Primer Principio. Esta ley apoya todo su contenido aceptando la existencia de una magnitud física llamada entropía , de tal manera que, para un sistema aislado (que no intercambia materia ni energía con su entorno), la variación de la entropía siempre debe ser mayor que cero
Tercera Ley de la Termodinamica
y Ley Cero de la Termodinamica
La Tercera de las leyes de la termodinámica, propuesta por Walther Nernst, afirma que es imposible alcanzar una temperatura igual al cero absoluto mediante un número finito de procesos físicos. Puede formularse también como que a medida que un sistema dado se aproxima al cero absoluto, su entropía tiende a un valor constante específico. La entropía de los sólidos cristalinos puros puede considerarse cero bajo temperaturas iguales al cero absoluto. No es una noción exigida por la Termodinámica clásica, así que es probablemente inapropiado tratarlo de “ley
Además de la primera y segunda leyes de la termodinámica, existen la ley cero y la tercera ley de la termodinámica
Ley Cero de la Termodinámica (de Equilibrio):
"Si dos objetos A y B están por separado en equilibrio térmico con un tercer objeto C, entonces los objetos A y B están en equilibrio térmico entre sí".
Como consecuencia de esta ley se puede afirmar que dos objetos en equilibrio térmico entre sí están a la misma temperatura y que si tienen temperaturas diferentes, no se encuentran en equilibrio térmico entre sí.
Tercera Ley de la Termodinámica.
La tercera ley tiene varios enunciados equivalentes:
"No se puede llegar al cero absoluto mediante una serie finita de procesos"
Es el calor que entra desde el "mundo exterior" lo que impide que en los experimentos se alcancen temperaturas más bajas. El cero absoluto es la temperatura teórica más baja posible y se caracteriza por la total ausencia de calor. Es la temperatura a la cual cesa el movimiento de las partículas. El cero absoluto (0 K) corresponde aproximadamente a la temperatura de - 273,16ºC. Nunca se ha alcanzado tal temperatura y la termodinámica asegura que es inalcanzable.
"La entropía de cualquier sustancia pura en equilibrio termodinámico tiende a cero a medida que la temperatura tiende a cero".
"La primera y la segunda ley de la termodinámica se pueden aplicar hasta el límite del cero absoluto, siempre y cuando en este límite las variaciones de entropía sean nulas para todo proceso reversible".
Ley Cero de la Termodinámica (de Equilibrio):
"Si dos objetos A y B están por separado en equilibrio térmico con un tercer objeto C, entonces los objetos A y B están en equilibrio térmico entre sí".
Como consecuencia de esta ley se puede afirmar que dos objetos en equilibrio térmico entre sí están a la misma temperatura y que si tienen temperaturas diferentes, no se encuentran en equilibrio térmico entre sí.
Tercera Ley de la Termodinámica.
La tercera ley tiene varios enunciados equivalentes:
"No se puede llegar al cero absoluto mediante una serie finita de procesos"
Es el calor que entra desde el "mundo exterior" lo que impide que en los experimentos se alcancen temperaturas más bajas. El cero absoluto es la temperatura teórica más baja posible y se caracteriza por la total ausencia de calor. Es la temperatura a la cual cesa el movimiento de las partículas. El cero absoluto (0 K) corresponde aproximadamente a la temperatura de - 273,16ºC. Nunca se ha alcanzado tal temperatura y la termodinámica asegura que es inalcanzable.
"La entropía de cualquier sustancia pura en equilibrio termodinámico tiende a cero a medida que la temperatura tiende a cero".
"La primera y la segunda ley de la termodinámica se pueden aplicar hasta el límite del cero absoluto, siempre y cuando en este límite las variaciones de entropía sean nulas para todo proceso reversible".
 

Att: Nancy elizbeth Olvera Gaspar.

FISIÓN Y FUSION NUCLEAR.

FISIÓN NUCLEAR.

FISIÓN NUCLEAR.
Los conceptos de fisión y fusión nuclear difieren en las características de formación de cada uno. De esta forma se encuentra que la fisión (utilizada en las bombas y reactores nucleares) consiste en el "bombardeo" de partículas subatómicas al uranio (o a cualquier elemento transuránico, siempre y cuando sus características lo permitan), trayendo como consecuencia la fisión (de allí su nombre) del átomo y con esto la de los demás átomos adyacentes al bombardeado en reacción en cadena. Mientras que, la fusión es la unión bajo ciertas condiciones (altas presiones, altas temperaturas, altas cargas, etc.) de dos o más átomos y genera mucha más energía que la fisión.
En física nuclear, la fisión es una reacción nuclear, lo que significa que tiene lugar en el núcleo atómico. La fisión ocurre cuando un núcleo pesado se divide en dos o más núcleos pequeños, además de algunos subproductos como neutrones libres, fotones (generalmente rayos gamma) y otros fragmentos del núcleo como partículas alfa (núcleos de helio) y beta (electrones y positrones de alta energía).


La fisión de núcleos pesados es un proceso exotérmico lo que supone que se liberan cantidades sustanciales de energía. El proceso genera mucha más energía que la liberada en las reacciones químicas convencionales, en las que están implicadas las cortezas electrónicas; la energía se emite, tanto en forma de radiación gamma como de energía cinética de los fragmentos de la fisión, que calentarán la materia que se encuentre alrededor del espacio donde se produzca la fisión.


Los núcleos atómicos lanzados como productos de la fisión pueden ser varios elementos químicos. Los elementos que se producen son resultado del azar, pero estadísticamente el resultado más probable es encontrar núcleos con la mitad de protones y neutrones del átomo fisionado original.
Los productos de la fisión son generalmente altamente radiactivos, no son isótopos estables; estos isótopos entonces decaen, mediante cadenas de desintegración.



 
La fisión se puede inducir por varios métodos, incluyendo el bombardeo del núcleo de un átomo fisionable con una partícula de la energía correcta; la otra partícula es generalmente un neutrón libre. Este neutrón libre es absorbido por el núcleo, haciéndolo inestable (como una pirámide de naranjas en el supermercado llega a ser inestable si alguien lanza otra naranja en ella a la velocidad correcta). El núcleo inestable entonces se partirá en dos o más pedazos: los productos de la fisión que incluyen dos núcleos más pequeños, hasta siete neutrones libres (con una media de dos y medio por reacción), y algunos fotones.

viernes, 3 de junio de 2011




Un proceso isobárico, es un proceso termodinámico que ocurre a presión constante. En el calor transferido a presión constante está relacionado con el resto de variables mediante:
\triangle Q = \triangle U+ P \triangle V,

Donde:
Q\! = Calor transferido.
U\! = Energía Interna.
P\! = Presión.
V\! = Volumen.
En un diagrama P-V, un proceso isobárico aparece como una línea horizontal.


Proceso isobárico de un gas

Una expansión isobárica es un proceso en el cual un gas se expande (o contrae) mientras que la presión del mismo no varía, es decir si en un estado 1 del proceso la presión es P1 y en el estado 2 del mismo proceso la presión es P2, entonces P1 = P2. La primera ley de la termodinámica nos indica que:
dQ = dU + dW
Entonces integrando la expresión anterior, tomando como estado inicial el estado 1 y estado final el estado 2, se obtiene:

 \int_{1}^{2} \, dQ =  \int_{1}^{2} \, dU +  \int_{1}^{2} \, dW ..........(1)
Por la definición de trabajo dada en mecánica se tiene que:
dW = \vec F\;\cdot\;d\vec r\;
Pero la fuerza \vec F\; se puede expresar en función de la presión que se ejerce el gas, y el desplazamiento d\vec r\; se puede escribir como dx, entonces:
dW = \vec F\;\cdot\;d\vec r\; = PAdx
Pero Adx equivale a dV, el aumento en el volumen del gas durante esta pequeña expansión, entonces el trabajo efectuado por el gas sobre los alrededores como resultado de la expansión es:
dW = PAdx = PdV ..........(2)
Ahora reemplazando (1) en (2) se puede integrar:
 \int_{1}^{2} \, dQ =  \int_{1}^{2} \, dU +  \int_{1}^{2} \, PdV
Como la presión P es constante, puede salir fuera de la integral:
 \int_{1}^{2} \, dQ =  \int_{1}^{2} \, dU +  P\int_{1}^{2} \, dV
Integrando:
 [Q]_1^2 = [U]_1^2 + P[V]_1^2
Evaluando en los límites:
Q2 − Q1 = U2 − U1 + P(V2 − V1)
\Delta\;Q = \Delta\;U + P\Delta\;V

TEORIA DEL CAOS

Teoría de caos
 Es la denominación popular de la rama de las matemáticas y la física que trata ciertos tipos de comportamientos impredecibles de los sistemas dinámicos. Los sistemas dinámicos se pueden clasificar básicamente en: estables inestables caóticos Un sistema estable tiende, según transcurre el tiempo, a un punto u órbita, según su dimensión . Un sistema inestable se escapa de los atractores, y un sistema caótico manifiesta los dos comportamientos. Por un lado, existe un atractor por el cual el sistema se ve atraído, pero a la vez, hay "fuerzas" que lo alejan de éste. De esa manera, el sistema permanece confinado en una zona de su espacio de estados, pero sin tender a un atractor fijo. Una de las mayores características de un sistema inestable es que tiene una gran dependencia de las condiciones iniciales. De un sistema del que se conocen sus ecuaciones características, y con unas condiciones iniciales fijas, se puede conocer exactamente su evolución en el tiempo. Pero en el caso de los sistemas caóticos, una mínima diferencia en esas condiciones hace que el sistema evolucione de manera totalmente distinta. Ejemplos de tales sistemas incluyen la atmósfera terrestre, el Sistema Solar, las placas tectónicas, los fluidos en régimen turbulento y los crecimientos de población.




Una de las señas de identidad de la teoría del caos es la propiedad de la dependencia sensible a las condiciones iniciales, que en esencia lo que nos indica es que una pequeña variación apenas insignificante en la determinación de las condiciones iniciales de un sistema físico puede acarrear consecuencias muy drásticas a la hora de la predicción de su evolución futura. Es lo que popularmente se ha llamado efecto mariposa. Por otro lado la Mecánica Cuántica es la parte de la Física que estudia el comportamiento de los átomos, nucleos, electrones y otros objetos subátomicos del mundo microscópico. Desde los arbores de la teoría del caos comenzó a aplicarse sus métodos e ideas a numerosos fenómenos de la naturaleza y como no podía ser de otra manera, los físicos comenzaron a tratar de ver las manifestaciones que el caos podría tener a nivel cuántico. Ello dió lugar a una disciplina que se conoce como Caos Cuántico. De acuerdo con los resultados de experimentos recientes descritos en la reciente entrada de este blog Primera evidencia experimental del caos en el mundo cuántico, parece ser que muestran una evidencia de que el comportamiento caótico también se produce a nivel cuántico, lo cual no deja de ser algo importante. Pero tal y como señala Zeeya Merali en Nature, lo que parece todavía más llamativo es que dos de los temas más calientes en la investigación física de nuestros dias, la teoría del caos y el entrelazamiento cuántico estén unidos tal y como se desprende de los experimentos con átomos de Cesio llevados a cabo en la Universidad de Arizona. Esta relación podría suministrar claves de la relación entre el dominio clásico y el cuántico en la descripción de los fenómenos de la naturaleza.
El entrelazamiento cuántico se refiere a una situación en la que un numero de particulas podría entrelzarse de tal modo que lo que le ocurre a una de ellas afectaría al resto. Según declaraciones de Nir Davidson, físico del Weizmann Institute of Science, en Rehovot, Israel, “Han logrado poner juntos dos conceptos de Física, de los que se ha pensado que operaban en regimenes completamente diferentes. Es soprendente e interesante”. Según ha declarado Poul Jessen de la Universidad de Arizona, “Hemos encontrado que átomos que comienzan en islas de estabilidad permanecen no entrelazados, mientras que los que comienzan en un mar caótico, entonces los espines atómicos y nucleares rapidamente se entrelazan”.

PUBLICADO: AGUILLON MENDOZA JAIRO JOSAFA 6 AMM

EL ATOMO Y CUANTOS

QUE ES EL ATOMO


—  Átomo (del latín atomus, y éste del griego άτομος, indivisible) es la unidad más pequeña de un elemento químico que mantiene su identidad o sus propiedades y que no es posible dividir mediante procesos químicos.
—  El concepto de átomo como bloque básico e indivisible que compone la materia del universo ya fue postulado por la escuela atomista en la Antigua Grecia. Sin embargo, su existencia no quedó demostrada hasta el siglo XIX. Con el desarrollo de la física nuclear en el siglo XX se comprobó que el átomo puede subdividirse en partículas más pequeñas.
—  Su denso núcleo representan el 99.9% de la masa del átomo, y está compuesto de bariones llamados protones y neutrones, rodeados por una nube de electrones, que -en un átomo neutro- igualan el número de protones.








  


PARTES DEL ATOMO


—  Partícula nuclear con carga positiva igual en magnitud a la carga negativa del electrón; junto con el neutrón, está presente en todos los núcleos atómicos.
—  Rutherford comprobó que un campo magnético desviaba las partículas alfa con mucha menos fuerza que las partículas beta. Por añadidura, las desviaba en dirección opuesta, lo cual significaba que la partícula alfa tenía una carga positiva, es decir, contraria a la negativa del electrón. La intensidad de tal desviación permitió calcular que la partícula alfa tenía, como mínimo, una masa dos veces mayor que la del hidrogenión, cuya carga positiva era la más pequeña conocida hasta entonces.


—  Partícula sin carga que constituye una de las partículas fundamentales que componen la materia.
—  El físico inglés James Chadwick sugirió que la radiación estaba formada de partículas. Para determinar su tamaño, bombardeó átomos de boro con ellas y a partir del incremento en masa del nuevo núcleo, calculó que la partícula añadida al boro tenía una masa más o menos igual al protón. Sin embargo, la partícula en sí no podía detectarse en una cámara de niebla de Wilson. Chadwick decidió que la explicación debía ser que la partícula no poseía carga eléctrica (una partícula sin carga no produce ionización y, por lo tanto, no condensa gotitas de agua).


 




—  Tipo de partícula elemental que, junto con los protones y los neutrones, forma los átomos y la molécula. A Thomson se le considera el descubridor del electrón en 1906 por sus experimentos con el flujo de partículas (electrones) que componen los rayos catódicos.
—  Rayos catódicos: El flujo de una corriente eléctrica en un conductor es causado por el movimiento de los electrones libres del conductor. En los tubos de vacío, un cátodo calentado emite una corriente de electrones que puede emplearse para amplificar o rectificar una corriente eléctrica..






En física , el término cuanto o cuantio (del latín Quantum, plural Quanta, que representa una cantidad de algo) denotaba en la física cuántica primitiva tanto el valor mínimo que puede tomar una determinada magnitud en un sistema físico, como la mínima variación posible de este parámetro al pasar de un estado discreto a otro. Se hablaba de que una determinada magnitud estaba cuantizada según el valor de cuanto. Es decir, cuanto es una proporción hecha por la magnitud dada.
Un ejemplo del modo en que algunas cantidades relevantes de un sistema físico están cuantizadas lo encontramos en el caso de la carga eléctrica de un cuerpo, que sólo puede tomar un valor que sea un múltiplo entero de la carga del electrón. En la moderna teoría cuántica aunque se sigue hablando de cuantización el término cuanto ha caído en desuso. El hecho de que las magnitudes estén cuantizadas se considera ahora un hecho secundario y menos definitorio de las caracterísitcas esenciales de la teoría.
En informática, un cuanto de tiempo es un pequeño intervalo de tiempo que se asigna a un proceso para que ejecute sus instrucciones. El cuanto es determinado por el planificador de procesos utilizando algún algoritmo de planificación.









Refraccion

Este tema de refraccion es el cambio de dirección que experimenta un rayo de luz cuando pasa de un medio transparente a otro también transparente. Este cambio de dirección está originado por la distinta velocidad de la luz en cada medio.
{short description of image}



La refracción es el cambio de dirección que experimenta una onda al pasar de un medio material a otro. Sólo se produce si la onda incide oblicuamente sobre la superficie de separación de los dos medios y si éstos tienen índices de refracción distintos. La refracción se origina en el cambio de velocidad de propagación de la onda.


Un ejemplo de este fenómeno se ve cuando se sumerge un lápiz en un vaso con agua: el lápiz parece quebrado. También se produce refracción cuando la luz atraviesa capas de aire a distinta temperatura, de la que depende el índice de refracción. Los espejismos son producidos por un caso extremo de refracción, denominado reflexión total. Aunque el fenómeno de la refracción se observa frecuentemente en ondas electromagnéticas como la luz, el concepto es aplicable a cualquier tipo de onda.
Cuando un rayo se refracta al pasar de un medio a otro, el ángulo de refracción con el que entra es igual al ángulo en que sale al volver a pasar de ese medio al medio inicial.


Se produce cuando la luz pasa de un medio de propagación a otro con una densidad óptica diferente, sufriendo un cambio de rapidez y un cambio de dirección si no incide perpendicularmente en la superficie.








Índice de refracción

Es la relación entre la velocidad de propagación de la onda en un medio de referencia (por ejemplo el vacío para las ondas electromagnéticas) y su velocidad en el medio del que se trate.


INDICE DE REFRACCIÓN

Se llama índice de refracción absoluto "n" de un medio transparente al cociente entre la velocidad de la luz en el vacío ,"c", y la velocidad que tiene la luz en ese medio, "v". El valor de "n" es siempre adimensional y mayor que la unidad, es una constante característica de cada medio: n = c/v.




Refracción de la luz al cambiar del medio agua al medio aire, y viceversa.

La refracción se origina en el cambio de velocidad que experimenta la onda. El índice de refracción es precisamente la relación entre la velocidad de la onda en un medio de referencia (el vacío para las ondas electromagnéticas) y su velocidad en el medio de que se trate. Un ejemplo de este fenómeno se ve cuando se sumerge un lápiz en un vaso con agua: el lápiz parece quebrado. ( ver  Imagen )




También se produce cuando la luz atraviesa capas de aire a distinta temperatura, de la que depende el índice de refracción. Los espejismos son producidos un caso extremo de refracción, denominado reflexión total. Esta desviación en la dirección de propagación se explica por medio de la ley de Snell. Esta ley, así como la refracción en medios no homogéneos, son consecuencia del principio de Fermat, que indica que la luz se propaga entre dos puntos siguiendo la trayectoria de recorrido óptico de menor tiempo. 




FISICA: Refraccion de la luz

LA LUZ



1.- ¿Qué es la luz? La luz es una radiación que se propaga en forma de ondas. Las ondas que se pueden propagar en el vacío se llaman ONDAS ELECTROMAGNÉTICAS. La luz es una radiación electromagnética.


Características de las ondas electromagnéticas

Las ondas electromagnéticas se propagan en el vacío a la velocidad de 300000 km/s, que se conoce como "velocidad de la luz en el vacío" y se simboliza con la letra c (c = 300000 km/s).

 

CARACTERÍSTICAS DE LAS ONDAS

PROPIEDADES DE LAS ONDAS

La velocidad de la luz en el vacío no puede ser superada por la de ningún otro movimiento existente en la naturaleza. En cualquier otro medio, la velocidad de la luz es inferior.

La energía transportada por las ondas es proporcional a su frecuencia, de modo que cuanto mayor es la frecuencia de la onda, mayor es su energía.

Las ondas electromagnéticas se clasifican según su frecuencia como puede verse en el siguiente diagrama:


La LUZ es la radiación visible del espectro electromagnético que podemos captar con nuestros ojos.

 

2) Algunas propiedades de la luz

La luz presenta tres propiedades características:

Se propaga en línea recta.


Se refleja cuando llega a una superficie reflectante.


Cambia de dirección cuando pasa de un medio a otro (se refracta).


2.1.- La luz se propaga en línea recta La luz se propaga en línea recta. La línea recta que representa la dirección y el sentido de la propagación de la luz se denomina rayo de luz (el rayo es una representación, una línea sin grosor, no debe confundirse con un haz, que sí tiene grosor).

Un hecho que demuestra la propagación rectilínea de la luz es la formación de sombras. Una sombra es una silueta oscura con la forma del objeto.

Sombras, penumbras y eclipses

- Si un foco, grande o pequeño, de luz se encuentra muy lejos de un objeto produce sombras nítidas.

- Si un foco grande se encuentra cercano al objeto, se formará sombra donde no lleguen los rayos procedentes de los extremos del foco y penumbra donde no lleguen los rayos procedentes de un extremo pero sí del otro.


Este fenómeno de sombra y penumbra es el que tiene lugar en los eclipses.


jueves, 2 de junio de 2011

REFRACCION DE LA LUZ


REFRACCIÓN DE LA LUZ
La refracción es el cambio de dirección que experimenta una onda al pasar de un medio material a otro. Sólo se produce si la onda incide oblicuamente sobre la superficie de separación de los dos medios y si éstos tienen índices de refracción distintos. La refracción se origina en el cambio de velocidad de propagación de la onda.
Un ejemplo de este fenómeno se ve cuando se sumerge un lápiz en un vaso con agua: el lápiz parece quebrado. También se produce refracción cuando la luz atraviesa capas de aire a distinta temperatura, de la que depende el índice de refracción. Los espejismos son producidos por un caso extremo de refracción, denominado reflexión total. Aunque el fenómeno de la refracción se observa frecuentemente en ondas electromagnéticas como la luz, el concepto es aplicable a cualquier tipo de onda.
Cuando un rayo se refracta al pasar de un medio a otro, el ángulo de refracción con el que entra es igual al ángulo en que sale al volver a pasar de ese medio al medio inicial.


ÁNGULO DE INCIDENCIA Y ÁNGULO DE REFRACCIÓN
Se llama ángulo de incidencia -i-  el formado por el rayo incidente y la normal. La normal es una recta imaginaria perpendicular a la superficie de separación de los dos medios en el punto de contacto del rayo.
El ángulo de refracción -r'-  es el formado por el rayo refractado y la normal.

Se llama índice de refracción absoluto "n" de un medio transparente al cociente entre la velocidad de la luz en el vacío ,"c",  y la velocidad que tiene la luz en ese medio, "v". El valor de "n" es siempre adimensional y mayor que la unidad, es una constante característica de cada medio: n = c/v.


SONIDO


Naturaleza del sonido

El sonido consiste en la propagación de una perturbación en un medio (en general el aire).
¿Cómo es la energía sonora? ¿Cómo se propaga la energía de un lugar a otro?
Para comprender mejor esto imaginemos un tubo muy largo lleno de aire. El aire está formado por una cantidad muy grande de pequeñas partículas o moléculas. Inicialmente, el aire dentro del tubo está en reposo (o más técnicamente, en equilibrio). Este equilibrio es dinámico ya que las moléculas se mueven en todas direcciones debido a la agitación térmica, pero con la particularidad de que están homogéneamente distribuidas




El sonido, en física, es cualquier fenómeno que involucre la propagación en forma de ondas elásticas (sean audibles o no), generalmente a través de un fluido (u otro medio elástico) que esté generando el movimiento vibratorio de un cuerpo.
El sonido humanamente audible consiste en ondas sonoras consistentes en oscilaciones de la presión del aire, que son convertidas en ondas mecánicas en el oído humano y percibidas por el cerebro. La propagación del sonido es similar en los fluidos, donde el sonido toma la forma de fluctuaciones de presión. En los cuerpos sólidos la propagación del sonido involucra variaciones del estado tensional del medio.
La propagación del sonido involucra transporte de energía sin transporte de materia, en forma de ondas mecánicas que se propagan a través de la materia sólida, líquidao gaseosa. Como las vibraciones se producen en la misma dirección en la que se propaga el sonido, se trata de una onda longitudinal.
El sonido es un fenómeno vibratorio transmitido en forma de ondas. Para que se genere un sonido es necesario que vibre alguna fuente. Las vibraciones pueden ser transmitidas a través de diversos medios elásticos, entre los más comunes se encuentran el aire y el agua. La fonética acústica concentra su interés especialmente en los sonidos del habla: cómo se generan, cómo se perciben, y cómo se pueden describir gráfica y/o cuantitativamente.

La frecuencia es la magnitud física asociada al tono. Las frecuencias más altas corresponden a los tonos más agudos, mientras que las frecuencias más bajas corresponden a los tonos más graves. El valor de la frecuencia se expresa en ciclos/segundo (s-1) o hercios (Hz).
Una onda es una perturbación que avanza o que se propaga en un medio material o incluso en el vacío. A pesar de la naturaleza diversa de las perturbaciones que pueden originarlas, todas las ondas tienen un comportamiento semejante. El sonido es un tipo de onda que se propaga únicamente en presencia de un medio que haga de soporte de la perturbación. Los conceptos generales sobre ondas sirven para describir el sonido, pero, inversamente, los fenómenos sonoros permiten comprender mejor algunas de las características del comportamiento ondulatorio


EL SONIDO Y SU PROPAGACIÓN


Las ondas que se propagan a lo largo de un muelle como consecuencia de una compresión longitudinal del mismo constituyen un modelo de ondas mecánicas que se asemeja bastante a la forma en la que el sonido se genera y se propaga. Las ondas sonoras se producen también como consecuencia de una compresión del medio a lo largo de la dirección de propagación. Son, por tanto, ondas longitudinales.
                                     


PROPIEDADES DEL SONIDO
Las propiedades del sonido son caracteristicas particulares del mismo que permitene establecer diferencias entre otras entidades sonoras. Estas propiedades son:
Intensidad
Tono
timbre
Intensidad


La intensidad del sonido percibido, o propiedad que hace que éste se capte como fuerte o como débil, está relacionada con la intensidad de la onda sonora correspondiente, también llamada intensidad acústica. La intensidad acústica es una magnitud que da idea de la cantidad de energía que está fluyendo por el medio como consecuencia de la propagación de la onda.
Se define como la energía que atraviesa por segundo una superficie unidad dispuesta perpendicularmente a la dirección de propagación. Equivale a una potencia por unidad de superficie y se expresa en W/m2. La intensidad de una onda sonora es proporcional al cuadrado de su frecuencia y al cuadrado de su amplitud y disminuye con la distancia al foco.







Tono
El tono es la cualidad del sonido mediante la cual el oído le asigna un lugar en la escala musical, permitiendo, por tanto, distinguir entre los graves y los agudos. La magnitud física que está asociada al tono es la frecuencia. Los sonidos percibidos como graves corresponden a frecuencias bajas, mientras que los agudos son debidos a frecuencias altas. Así el sonido más grave de una guitarra corresponde a una frecuencia de 82,4 Hz y el más agudo a 698,5 hertzs.
No todas las ondas sonoras pueden ser percibidas por el oído humano, el cual es sensible únicamente a aquellas cuya frecuencia está comprendida entre los 20 y los 20 000 Hz. En el aire dichos valores extremos corresponden a longitudes de onda que van desde 16 metros hasta 1,6 centímetros respectivamente. En general se trata de ondas de pequeña amplitud. Aquí se observa perfectamente






TIMBRE
El timbre es la cualidad del sonido que permite distinguir sonidos procedentes de diferentes instrumentos, aun cuando posean igual tono e intensidad. Debido a esta misma cualidad es posible reconocer a una persona por su voz, que resulta característica de cada individuo.
Pocas veces las ondas sonoras corresponden a sonidos puros, sólo los diapasones generan este tipo de sonidos, que son debidos a una sola frecuencia y representados por una onda armónica. Los instrumentos musicales, por el contrario, dan lugar a un sonido más rico que resulta de vibraciones complejas. Cada vibración compleja puede considerarse compuesta por una serie de vibraciones armónico simples de una frecuencia y de una amplitud determinadas, cada una de las cuales, si se considerara separadamente, daría lugar a un sonido puro. Esta mezcla de tonos parciales es característica de cada instrumento y define su timbre.